N-methyl-D-aspartate receptor-induced, inherent oscillatory activity in neurons active during fictive locomotion in the lamprey.
نویسندگان
چکیده
Bath application of N-methyl-aspartate induces fictive locomotor activity in the isolated spinal cord preparation of the lamprey, as well as TTX-resistant membrane potential oscillations in many individual neurons. This inherent oscillatory activity is shown to depend on a specific activation of N-methyl-D-aspartate (NMDA) receptors. This activation initiates voltage-dependent, magnesium-requiring membrane potential bistability, presumably due to a development of a region of negative slope conductance in the current-voltage relation of the neuron. When sodium ions were removed from the bathing solution, oscillations disappeared, and the membrane potential was maintained at a hyperpolarized level, suggesting that the depolarizing current during the oscillatory cycle is mainly carried by sodium ions. Replacing Ca2+ with Ba2+ also leads to a cessation of oscillatory activity, with the membrane potential remaining at the more depolarized level. This indicates an involvement of a Ca2+-dependent K+ current during the repolarization phase. These findings, together with the voltage dependence, can account for the main characteristics of the NMDA receptor-induced, TTX-resistant membrane potential oscillations. This oscillatory behavior has been demonstrated in motoneurons and in several interneurons including CC interneurons but has not been found in edge cells, dorsal cells, or lateral interneurons. The possibility that inherent oscillatory membrane properties may contribute to the activity pattern during fictive locomotion was investigated in experiments with intracellular current injection in the absence of TTX. The stimulation effects obtained required the presence of magnesium ions and were analogous to the stimulation effects seen during oscillations after TTX blockade. Together with similarities in, for instance, frequency and amplitude between the locomotor oscillatory activity and the TTX-resistant oscillations, the results are compatible with an involvement of inherent, oscillatory membrane properties during fictive locomotion in the lamprey spinal cord.
منابع مشابه
A Quantitative Investigation of Calcium Signals for Locomotor Pattern Generation in the Lamprey Spinal Cord
Locomotor pattern generation requires the network coordination of spinal ventral horn neurons acting in concert with the oscillatory properties of individual neurons. In the spinal cord, Nmethyl-D-aspartate (NMDA) activates neuronal oscillators that are believed to rely on Ca entry to the cytosol through voltage operated Ca channels and synaptically activated NMDA receptors. Ca signaling in lam...
متن کاملQuantitative investigation of calcium signals for locomotor pattern generation in the lamprey spinal cord.
Locomotor pattern generation requires the network coordination of spinal ventral horn neurons acting in concert with the oscillatory properties of individual neurons. In the spinal cord, N-methyl-d-aspartate (NMDA) activates neuronal oscillators that are believed to rely on Ca(2+) entry to the cytosol through voltage-operated Ca(2+) channels and synaptically activated NMDA receptors. Ca(2+) sig...
متن کاملIntracellular QX-314 causes depression of membrane potential oscillations in lamprey spinal neurons during fictive locomotion.
Spinal neurons undergo large cyclic membrane potential oscillations during fictive locomotion in lamprey. It was investigated whether these oscillations were due only to synaptically driven excitatory and inhibitory potentials or if voltage-dependent inward conductances also contribute to the depolarizing phase by using N-(2,6-dimethylphenyl carbamoylmethyl)triethylammonium bromide (QX-314) adm...
متن کامل5-HT prolongs ventral root bursting via presynaptic inhibition of synaptic activity during fictive locomotion in lamprey.
Locomotor pattern generation is maintained by integration of the intrinsic properties of spinal central pattern generator (CPG) neurons in conjunction with synaptic activity of the neural network. In the lamprey, the spinal locomotor CPG is modulated by 5-HT. On a cellular level, 5-HT presynaptically inhibits synaptic transmission and postsynaptically inhibits a Ca2+-activated K+ current respon...
متن کاملThe spinal 5-HT system contributes to the generation of fictive locomotion in lamprey.
Activation of NMDA receptors evokes sustained fictive locomotion in the isolated spinal cord of the sea lamprey Petromyzon marinus (P. marinus), but in the river lamprey Lampetra fluviatilis (L. fluviatilis) the ventral root activity is often irregular. A previous study showed that the number of 5-HT immunoreactive fibres, neurones and varicosities are much lower in the spinal cord of L. fluvia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 7 9 شماره
صفحات -
تاریخ انتشار 1987